
Wolfgang Koch

PD Dr. rer. nat. habil., Fellow, IEEE 

Fraunhofer FKIE / University of Bonn, 

Germany
www.koch@ieee.org, Fraunhoferstrasse 20, 53434 Wachtberg

Tutorial Notes Accompanying
the NATO Lecture Series on
Radar and SAR Systems for

Airborne and Space-based Surveillance

NATO STO LS SET-191

STO-EN-SET-235 4 - 1 

Target Tracking and Data Fusion for 
Ground Situational Awareness 



1.0 INTRODUCTION TO SENSOR DATA FUSION

Sensor data fusion is an omnipresent phenomenon that existed prior to its
technological realization or the scientific reflection on it. In fact, all living
creatures, including human beings, by nature or intuitively perform sensor
data fusion. Each in their own way, they combine or “fuse” sensations provided
by different and mutually complementary sense organs with knowledge learned
from previous experiences and communications from other creatures. As a
result, they produce a “mental picture” of their individual environment, the
basis of behaving appropriately in their struggle to avoid harm or successfully
reach a particular goal in a given situation.

1.1 Subject Matter

As a sophisticated technology with significant economic and defence impli-
cations as well as a branch of engineering science and applied informatics,
modern sensor data fusion aims at automating this capability of combining
complementary pieces of information. Sensor data fusion thus produces a “sit-
uation picture”, a reconstruction of an underlying “real situation”, which is
made possible by efficiently implemented mathematical algorithms exploiting
even imperfect data and enhanced by new information sources. Emphasis is
not only placed on advanced sensor systems, technical equivalents of sense
organs, but also on spatially distributed networks of homogeneous or hetero-
geneous sensors on stationary or moving platforms and on the integration
of data bases storing large amounts of quantitative context knowledge. The
suite of information sources to be fused is completed by the interaction with
human beings, which makes their own observations and particular expertise
accessible.

The information to be fused may comprise a large variety of attributes,
characterized, for example, by sensor ranges from less than a meter to hun-
dreds of kilometers, by time scales ranging from less than second to a few days,
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by nearly stationary or rapidly changing scenarios, by actors behaving coop-
eratively, in-cooperatively, or even hostile, by high precision measurements or
sensor data of poor quality.

Sensor data fusion systems emerging from this branch of technology have
in effect the character of “cognitive tools”, which enhance the perceptive facul-
ties of human beings in the same way conventional tools enhance their phys-
ical strength. In this type of interactive assistance system, the strengths of
automated data processing (dealing with mass data, fast calculation, large
memory, precision, reliability, robustness etc.) are put into service for the hu-
man beings involved. Automated sensor data fusion actually enables them
to bring their characteristically “human” strengths into play, such as qualita-
tively correct over-all judgment, expert knowledge and experience, intuition
and creativity, i.e. their “natural intelligence” that cannot be substituted by
automated systems in the foreseeable future. The user requirements to be ful-
filled in a particular application have a strong impact on the actual fusion
system design.

1.1.1 Origins of Modern Development

Sensor data fusion systems have been developed primarily for applications,
where a particular need for support systems of this type exists, for example in
time-critical situations or in situations with a high decision risk, where human
deficiencies must be complemented by automatically or interactively working
data fusion techniques. Examples are fusion tools for compensating decreasing
attention in routine and mass situations, for focusing attention on anomalous
or rare events, or complementing limited memory, reaction, and combination
capabilities of human beings. In addition to the advantages of reducing the
human workload in routine or mass tasks by exploiting large data streams
quickly, precisely, and comprehensively, fusion of mutually complementary in-
formation sources typically produces qualitatively new and important knowl-
edge that otherwise would remain unrevealed.

The demands for developing such support systems are particularly press-
ing in defence and security applications, such as surveillance, reconnaissance,
threat evaluation, and even weapon control. The earliest examples of large
sensor data fusion projects were designed for air defence against missiles and
low-flying bombers and influenced the development of civilian air traffic con-
trol systems. The development of modern sensor data fusion technology and
the underlying branch of applied science was stimulated by the advent of
sufficiently powerful and compact computers and high frequency devices, pro-
grammable digital signal processors, and last but not least by the “Stratecic
Defence Initiative (SDI)” announced by US President Ronald Reagan on
March 23, 1983.

After a certain level of maturity has been reached, the Joint Directors
of Laboratories (JDL), an advisory board to the US Department of Defense,
coined the technical term “Sensor Data and Information Fusion” in George
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Orwell’s very year 1984 and undertook the first attempt of a scientific sys-
tematization of the new technology and the research areas related to it [1,
Chapter 2, p. 24]. To the present day, the scientific fusion community speaks
of the “JDL Model of Information Fusion” and its subsequent generalizations
and adaptations [1, Chapter 3], [2]. The JDL model provides a structured and
integrated view on the complete functional chain from distributed sensors,
data bases, and human reports to the users and their options to act including
various feed-back loops at different levels (Figure 1.1). It seems to be valid
even in the upcoming large fields of civilian applications of sensor data fu-
sion and computer security [3]. Obviously, the fundamental concepts of sensor
data fusion have been developed long before their full technical feasibility and
robust realizability in practical applications.
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Fig. 1.1. Overview of the JDL-Model of Sensor Data and Information Fusion [1,
Chapter 3], which provides a structured and integrated view on the complete func-
tional chain from distributed sensors, data bases, and human reports to the users
and their options to act including various feed-back loops at different levels.

1.1.2 General Technological Prerequisites

The modern development of sensor data fusion systems was made possible by
substantial progress in the following areas over the recent decades:
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1. Advanced and robust sensor systems, technical equivalents of sense or-
gans with high sensitivity or coverage are made available that may open
dimensions of perception usually unaccessible to most living creatures.

2. Communication links with sufficient bandwidths, small latencies, stable
connectivity, and robustness against interference are the backbones of spa-
tially distributed networks of homogeneous or heterogeneous sensors.

3. Mature navigation systems are prerequisites of (semi-)autonomously op-
erating sensor platforms and common frames of reference for the sensor
data based on precise space-time registration including mutual alignment.

4. Information technology provides not only sufficient processing power for
dealing with large data streams, but also efficient data base technology
and fast algorithmic realizations of data exploitation methods.

5. Technical interoperability , the ability of two or more sub-systems or com-
ponents to exchange and to information, is inevitable to build distributed
“systems of systems” for sensor exploration and data exploitation [4].

6. Advanced and ergonomically efficient Human-Machine Interaction (HMI)
tools are an integral part of man-machine-systems presenting the results
of sensor data fusion systems to the users in an appropriate way [5].

The technological potential enabled by all these capabilities is much enhanced
by integrating then in an overlay sensor data fusion system.

1.1.3 Relation to Information Systems

According to this technological infrastructure, human decision makers on all
levels of hierarchy, as well as automated decision making systems, have access
to vast amounts of data. In order to optimize use of this high degree of data
availability in various decision tasks, however, the data continuously stream-
ing in must not overwhelm the human beings, decision making machines, or
actuators involved. On the contrary, the data must be fused in such a way
that at the right instant of time the right piece of high-quality information
relevant to a given situation is transmitted to the right user or component and
appropriately presented. Only if this is the case, can the data streams support
goal-oriented decisions and coordinated action planing in practical situations
and on all levels of decision hierarchy.

In civilian applications, management information or data warehouse sys-
tems are designed in order to handle large information streams. Their equiv-
alents in the defence and security domain are called C4ISTAR Systems [4].
This acronym denotes computer-assisted functions for C4 (Command, Con-
trol, Communications, Computers), I (Intelligence), and STAR (Surveillance,
Target Acquisition and Reconnaissance) in order to enable the coordination of
defence-related operations. While management information or data warehouse
systems are primarily used to obtain competitive advantages in economic en-
vironments, C4ISTAR systems aim at information dominance over potential
opponents. The observation that more or less the same terminology is used in
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both areas for characterizing the struggle to avoid harm or successfully reach
goals, is an indication of far-reaching fundamental commonalities of decision
processes in defence command & control as well as in product development
and planing, in spite of different accentuations in particular aspects.

A basic component of C4ISTAR information systems, modular and flexi-
bly designed as “systems of systems”, is the combination of sensor systems and
data bases with appropriate sensor data and information fusion sub-systems.
The objective at this level is the production of timely, consistent and, above
all, sufficiently complete and detailed “situation pictures”, which electronically
represent a complex and dynamically evolving overall scenario in the air, on
the ground, at sea, or in an urban environment. The concrete operational
requirements and restrictions in a given application define the particular in-
formation sources to be considered and data fusion techniques to be used.

A Characteristic Example

A particularly mature example of an information system, where advanced
sensor data fusion technology is among its central pillars, is given by a dis-
tributed, coalition-wide C4ISTAR system of systems for wide-area ground
surveillance. It mirrors many of the aspects previously addressed and has
been carried out within the framework of a multinational technology program
called MAJIIC (Multi-Sensor Aerospace-Ground Joint ISR Interoperability
Coalition) [4, Chapter 20]. By collaboratively using interoperable sensor and
data exploitation systems in coalition operations, MAJIIC has been designed
to improve situational awareness of military commanders over the various
levels of the decision making hierarchy.

Based on appropriate concepts of deployment and the corresponding tac-
tical procedures, technological tools for Collection, Coordination and Intelli-
gence Requirements Management (CCIRM) are initiated by individual sensor
service requests of deployed action forces. The CCIRM tools produce mission
plans according to superordinate priorities, task sensor systems with appro-
priate data acquisition missions, initiate data exploitation and fusion of the
produced sensor data streams in order to obtain high-quality reconnaissance
information, and, last but not least, guarantee the feedback of the right infor-
mation to the requesting forces at the right instant of time.

Under the constraint of leaving existing C4ISTAR system components of
the nations participating in MAJIIC unchanged as far as possible, the follow-
ing aspects are addressed with particular emphasis:

1. The integration of advanced sensor technology for airborne and ground-
based wide-area surveillance is mainly based on Ground Moving Target In-
dicator Radar (GMTI), Synthetic Aperture Radar (SAR), electro-optical
and infrared sensors (E/O, IR) producing freeze and motion imagery, Elec-
tronic Support Measures (ESM), and artillery localization sensors (radar-
or acoustics-based).
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Fig. 1.2. MAJIIC system architecture emphasizing the deployed sensors, databases,
and distributed sensor data fusion systems (Interoperable ISR Exploitation Sta-
tions).

2. Another basic issue is the identification and implementation of common
standards for distributing sensor data from heterogeneous sources includ-
ing appropriate data and meta-data formats, agreements on system archi-
tectures as well as the design and implementation of advanced information
security concepts.

3. In addition to sensor data fusion technology itself, tools and procedures
have been developed and are continuously enhanced for co-registration of
heterogeneous sensors, cross-cueing between the individual sensors of a
surveillance system, the sensors of different systems, and between sensors
and actuators, as well as for exploitation product management, representa-
tion of the “Coalition Ground Picture”, for coordinated mission planning,
tasking, management, and monitoring of the MAJIIC sub-systems.

4. MAJIIC-specific communications have been designed to be independent
of network-types and communication bandwidths, making it adaptable to
varying requirements. Commercially available and standardized internet-
and crypto-technology has been used in both the network design and the
implementation of interfaces and operational features. Important func-
tionalities are provided by collaboration tools enabling ad-hoc communi-
cation between operators and exchange of structured information.

5. The central information distribution nodes of MAJIIC C4ISTAR system of
systems are so-called Coalition Shared Data servers (CSD) making use of
modern database technology. Advanced Data Mining and Data Retrieval
tools are part of all MAJIIC data exploitation and fusion systems.
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6. From an operational point of view, a continuous interaction between Con-
cept Development and Experimentation (CD&E process, [7]) by planning,
running, and analyzing simulated and live C4ISTAR experiments is an es-
sential part of the MAJIIC program, fostering the transfer of MAJIIC
capabilities into national and coalition systems.

Figure 1.2 provides an overview of the MAJIIC system architecture and the
deployed sensor systems.

1.2 From Imperfect Data to Situation Pictures

Sensor data fusion typically provides answers to questions related to objects of
interest such as: Do object exist at all and how many of them are moving in the
sensors’ fields of view? Where are they geolocated at what time? Where will
they be in the future with what probability? How can their overall behavior be
characterized? Are anomalies or hints to their possible intentions recognizable?
What can be inferred about the classes the objects belong to or even their
identities? Are there clues for characteristic interrelations between individual
objects? In which regions do they have their origin? What can be said about
their possible destinations? Are there observable over-all object flows? Where
are sources or sinks of traffic? and many other questions.

The answers to those questions are the constitutive elements, from which
near real-time situation pictures can be produced that electronically represent
a complex and dynamically evolving overall scenario in the air, on the ground,
at sea, under water, as well as in out- or in-door urban environments, and even
more abstract spaces. According to the previous discussion, these “situation
elements” must be gained from the currently received sensor data streams
while taking into account all the available context knowledge and pre-history.
Since situation pictures are fundamental to any type of computer-aided deci-
sion support, the requirements of a given application define which particular
information sources are to be fused.

The sensor data to be fused are usually inaccurate, incomplete, or ambigu-
ous. Closely-spaced moving objects are often totally or partially irresolvable.
The measured object parameters may be false or corrupted by hostile mea-
sures. The context information is in many cases hard to formalize and even
contradictory in certain aspects. These deficiencies of the information to be
fused are unavoidable in any real-world application. Therefore, the extraction
of ‘information elements’ for situation pictures is by no means trivial and re-
quires a sophisticated mathematical methodology for dealing with imperfect
information. Besides a precise requirement analysis, this is one of the major
scientific features that characterizes and shapes sensor data fusion as branch
of applied science.
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Fig. 1.3. Sensor data and information fusion for situation pictures: overview of
characteristic aspects and their mutual interrelation.

1.2.1 Discussion of Characteristic Aspects

Figure 1.3 provides an overview of different aspects within this context and
their mutual interrelation, which should be emphasized::

1. The underlying sensor systems can be located in different ways (collocated,
distributed, mobile) producing measurements of the same or of different
type. A multisensor system potentially increases the coverage or data rate
of the total system and may help to resolve ambiguities.

2. Even by fusing homogeneous sensors, information can be obtained that
is unaccessible to each sensor individually, such as in stereoscopic vision,
where range information is provided by fusing two camera images taken
from different viewpoints.

3. Fusion of heterogeneous sensor data is of particular importance, such as
the combination of kinematic measurements with measured attributes pro-
viding information on the classes to which objects belongs to. Examples
for measured attributes are Signal Intelligence (SIGINT), Jet Engine Mod-
ulation (JEM), radial or lateral object extension, chemical signatures etc.

4. Especially for defense and security applications, the distinction between
active and passive sensing is important as passive sensors enable covert
surveillance, which does not reveal itself by actively emitting radiation.
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5. Multi-functional sensor systems, such as phased-array radar, offer addi-
tional operational modes, thus requiring more intelligent strategies of sen-
sor management that provide feedback to the process of information ac-
quisition via appropriate control or correction commands. By this, the
surveillance objectives can often be reached much more efficiently.

6. Context information is given, for example, by available knowledge on sen-
sor and object properties, which is often quantitatively described by statis-
tical models. Context knowledge is also given by environmental informa-
tion on roads or topographical occlusions and provided by Geographical
Information Systems (GIS). Seen from a different perspective, context in-
formation, such as road maps, can also be extracted from real-time sensor
data directly.

7. Militarily relevant context knowledge (e.g. doctrines, planning data, tac-
tics) and human observer reports (HUMINT: Human Intelligence) is also
important information in the fusion process. The exploitation of context
information of this kind can significantly improve the fusion system per-
formance.

1.2.2 Remarks on the Methods Used

Situation elements for producing timely situation pictures are provided by
integratively and spatio-temporally processing various pieces of information
that in themselves often may have only limited value for understanding the
situation. Essentially, logical cross-references, inherent complementarity, and
redundancy are exploited. More concretely speaking, the methods used are
characterized by a stochastic approach (estimating relevant state quantities)
and a more heuristically defined knowledge-based approach (modeling actual
human behavior when exploiting information).

Among the data exploitation products of data fusion systems, object
‘tracks’ are of particular importance. Tracking faces an omnipresent aspect
in every real-world application insofar as it is dealing with fusion of data
produced at different instants of time; i.e. tracking is important in all appli-
cations where particular emphasis is placed on the fact that the sensor data
to be exploited have the character of a time series.

Tracks thus represent currently available knowledge on relevant, time-
varying quantities characterizing the instantaneous “state” of individual tar-
gets or target groups of interest, such as aircraft, ships, submarines, vehicles,
or moving persons. Quantitative measures that reliably describe the quality
of this knowledge are an integral part of a track. The information obtained
by ‘tracking’ algorithms [26, 25, 58] also includes the history of the targets. If
possible, a one-to-one association between the target trajectories in the sen-
sors’ field of view and the produced tracks is to be established and has to be
preserved as long as possible (track continuity). The achievable track quality
does not only depend on the performance of the sensors used, but also on
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Fig. 1.4. Generic scheme of functional building blocks within a tracking/fusion
system along with its relation to the sensors (centralized configuration, type IV
according to O. Drummond).

target properties and the operational conditions within the scenario to be ob-
served. If tracks ‘match’ with the underlying real situation within the bounds
defined by inherent quality measures being part of them, we speak of ‘track
consistency”.

Tracking algorithms, including Bayesian multiple hypothesis trackers as
particularly well-understood examples, are iterative updating schemes for con-
ditional probability density functions representing all available knowledge on
the kinematic state of the objects to be tracked at discrete instants of time
tl. The probability densities are conditioned by both, the sensor data accu-
mulated up to some time tk, typically the current data acquisition time, as
well as by available context information, such as on sensor characteristics, the
object dynamics, the environment, topographical maps, or on certain rules
governing the object behavior. Depending on the time instant tl at which es-
timates for the state xl are required, the related estimation process is referred
to as prediction (tl > tk), filtering (tl = tk), or retrodiction (tl < tk) [59, 60].

1.2.3 A Generic Sensor Data Fusion System

Figure 1.4 shows a generic scheme of functional building blocks within a mul-
tiple sensor tracking and data fusion system along with its relation to the
underlying sensors. In the case of multi-functional sensors, there is feedback
from the tracking system to the process of sensor data acquisition (sensor
management). The following aspects should be emphasized:
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Sensor Systems

After passing a detection process, essentially working as a means of data rate
reduction, the signal processing provides estimates of parameters character-
izing the waveforms received at the sensors’ front ends (e.g. radar antennas).
From these estimates sensor reports are created, i.e. measured quantities pos-
sibly related to objects of interest, which are the input for the tracking and
sensor data fusion system. By using multiple sensors instead of one single sen-
sor, among other benefits, the reliability and robustness of the entire system
is usually increased, since malfunctions are recognized easier and earlier and
often can be compensated without risking a total system breakdown.

Interoperability

A prerequisite of all further processing steps, which at first sight seems to
be trivial, is technical interoperability. It guarantees that all relevant sensor
data are transmitted properly, in a timely way, and completely including all
necessary meta-data describing the sensor performance, the platform param-
eters, and environmental characteristics. This type of meta data is necessary
to transform the sensor data into common frames of reference, to identify
identical pieces of data, and to merge similar pieces of data into one single
augmented piece of information. The process of combining data from different
sources and providing the user with a unified view of these data is sometimes
also referred to as data integration. Often interoperability acts as a bottleneck
in designing real-world data fusion systems of systems [4, Chapter 20].

Fusion Process

All sensor data that can be associated to existing tracks are used for track
maintenance (using, e.g., prediction, filtering, and retrodiction). The remain-
ing data are processed for initiating new tentative tracks (multiple frame track
extraction). Association techniques thus play a key role in tracking/fusion ap-
plications. Context information in terms of statistical models (sensor per-
formance, object characteristics, object environment) is a prerequisite for
track maintenance and initiation. Track confirmation/termination, classifica-
tion/identification, and fusion of tracks related to the same objects or object
groups are part of the track management functionalities.

Human-Machine Interface

The scheme is completed by a human-machine interface with display and inter-
action functions. Context information can be updated or modified by direct
human interaction or by the track processor itself, for example as a conse-
quence of object classification or road map extraction. For an introduction to
the vast literature on the related problems in human factors engineering and
on practical systems solutions see [5].
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1.2.4 On Measuring Fusion Performance

In sensor data fusion, the underlying ‘real’ situation is typically unknown.
Only in expensive and time-consuming experiments certain aspects of a dy-
namically evolving situation are monitored, sometimes even with questionable
accuracy. For this reason, experiments are valuable for demonstrating the
“proof of concept” as well as to understand the underlying physical phenom-
ena and operational problems, for example. They are of limited use, however,
in performance evaluation and prediction. This underlines the role of compre-
hensive Monte-Carlo-simulations in fusion system performance evaluation.

According to the previous discussion, sensor data fusion systems try to
establish one-to-one relations between objects in the sensors’ fields of view
and identified object tracks in the situation picture. Strictly speaking, this
is only possible under ideal conditions regarding the sensor performance and
the underlying target scenario. It seems thus reasonable to measure the per-
formance of a given tracking/fusion system by its characteristic deficiencies
when compared to this ideal goal. In general, two categories of deficiencies
can be distinguished that are either caused by mis-match regarding the input
data or by non-optimal processing and unfavorable application constraints.

Selected Performance Measures

Selected performance measures or ‘measures of deficiency’ in the sense of the
previous discussion, which have practical relevance in fusion systems design
should be emphasized in the following.

1. Usually a time delay is involved until a track has been extracted from the
sensor data. A corresponding performance measure is thus given by the
‘extraction delay’ between the first detection of a target by a sensor and
a confirmed track.

2. False tracks, i.e. tracks related to unreal or unwanted targets, are un-
avoidable in the case of a high false return density (e.g. by clutter, jam-
ming/deception). Corresponding ‘deficiencies’ are: mean number of falsely
extracted targets per time and mean life time of a false track before its
deletion.

3. Targets should be represented by one and the same track until leaving
the field of view. Related performance measures are: mean life time of
true target tracks, probability of an ‘identity switch’, and probability of a
target not being represented by a track.

4. The track inaccuracy (given by the error covariance matrix of a state
estimate, e.g.) should be as small as possible. Furthermore, the deviations
between the estimated and actual target characteristics should correspond
with the error covariance matrices produced (consistency). If this is not
the case, ‘track loss’ usually occurs.

In a given application it is by no means simple to achieve a reasonable com-
promise between the various, competing performance measures and the user
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requirements. Optimization with respect to one measure may easily degrade
other performance measures, finally deteriorating the entire system perfor-
mance. This is especially true under more challenging conditions.

1.2.5 Tracking-derived Situation Elements

The primary objective of multiple sensor target tracking is to explore the
underlying target kinematics such as position, velocity, or acceleration. In
other words, standard target tracking applications gain information related
to ‘Level 1 Fusion’ according to the well-established terminology of the JDL
model of information fusion (see e.g. [1, Chapter 2] and the literature cited
therein). Kinematic data of this type, however, are by no means the only
information to be derived from target tracks. In many cases, reliable and
quantitative higher level information according to the JDL terminology can
be obtained. To be more concrete, wide-area air and ground surveillance is
considered here as an important real-world example serving as a paradigm for
other challenging tracking and fusion applications.

Inferences based on Retrodicted Tracks

The first type of higher JDL level information to be inferred from tracking
data is based on a closer analysis of the histories of the kinematic object states
provided by retrodiction techniques. The statements derived typically refer to
object characteristics that are either time invariant or change with time on a
much larger scale than kinematics quantities usually tend to do. This is the
main reason why the gain in accuracy achievable by retrodiction techniques
can be exploited.

• Velocity History. The analysis of precisely retrodicted velocity histories
enables the distinction of objects belonging to different classes such as
moving persons, boats, vehicles, vessels, helicopters, or jet aircraft. If the
object speed estimated with sufficiently high accuracy has exceeded a cer-
tain threshold, certain object classes can be reliably be excluded. As an
example, uncertainty whether an object is a helicopter or a wing aircraft
can be resolved if in the track history a velocity vector ‘Zero’ exists. De-
pending on the context of the underlying application, classifications of this
type can be essential to generate an alert report.

• Acceleration History. Similar considerations are valid if acceleration his-
tories are taken into account: High normal accelerations, e.g., are a clear
indication of a fighter aircraft. Moreover, one can safely conclude that a
fighter aircraft observed with a normal acceleration > 6 g, for example,
is not carrying a certain type of weaponry (any more). In other words,
conclusions on the threat level connected with the objects observed can
be drawn by analyzing kinematic tracks.
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• Heading, Aspect Angle. Precise reconstructions of the targets’ heading vec-
tors are not only important input information for threat evaluation and
weapon assignment in themselves, but also enable estimates of the aspect
angle of an object at a given instant of time with respect to other sensors,
such as those producing high range or Doppler resolution spectra. Track-
derived information of this type is basic for fusing spectra distributed in
time and can greatly improve object classification thus providing higher-
JDL-level information.

• Rare Event Detection. Analysis of JDL-level-1 tracks can be the key to
detecting rare or anomalous events by fusing kinematic tracks with other
context information such as annotated digital road maps and general rules
of behavior. A simple example in the area of continuous-time, wide-area
ground surveillance can be the production of an alert message if a large
freight vehicle is observed at an unusual time on a dirt road in a forest
region. There are analogous examples in the maritime or air domain.

Inferences based on Multiple Target Tracking

A second type of higher JDL level information related to mutual object inter-
relations can be inferred from JDL level 1 tracking data if emphasis is placed
on the results of multiple target tracking.

• Common History. Multiple target tracking methods can identify whether
a set of targets belongs to the same collectively moving group, such as
an aircraft formation or a vehicle convoy, whose spatial extension may be
estimated and tracked. If an aircraft formation has split off after a phase
of penetration, e.g., the interrelation between the individual objects is to
be preserved and provides valuable higher-JDL-level information that is
important, e.g., when a former group target is classified as ‘hostile’ since
this implies that all other targets originally belonging to the same group
are likely to be hostile as well.

• Object Sources and Sinks. The analysis of large amounts of target tracks
furthermore enables the recognition of sources and sinks of moving tar-
gets. By this type of reasoning, certain areas can be identified as air fields,
for example, or an area of concentration of military forces. In combina-
tion with available context information, the analysis of multiple object
tracks can also be used for target classification by origin or destination. A
classification as hostile or suspect directly leads to an alert report.

• Split-off Events. By exploiting multiple target tracking techniques, certain
split-off events can be identified as launches of air-to-air or air-to-surface
missiles. The recognition of such an event from JDL-level-1 tracking in-
formation not only has implications on classifying the original target as
a fighter aircraft, but can also establish a certain type of ‘book-keeping’,
such as counting the number of missile launches. This enables estimates of
the residual combat strength of the object, which has direct implications
on countermeasures, e.g.
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• Stopping Events. In the case of MTI radar (Moving Target Indicator),
Doppler blindness can be used to detect the event ‘A target under track
has stopped.’, provided this phenomenon is described by appropriate sen-
sor models. If there is previous evidence for a missile launcher, e.g., miss-
ing data due to Doppler blindness may indicate preparation for launch
with implications on potential countermeasures. In combination with other
tracks, a stopping event may also establish new object interrelations, for
example, when a target is waiting for another and then moving with it.

1.2.6 Selected Issues in Anomaly Detection

Anomaly detection can be regarded as a process of information fusion that
combines incomplete and imperfect pieces of mutually complementary sensor
data and context information in such a way that the attention of human deci-
sion makers or decision making systems is focused on particular events that are
“irregular” or may cause harm and thus require special actions, such as exploit-
ing more specialized sensors or initiating appropriate activities by military or
security personnel [41]. Fusion-based anomaly detection thus improves situa-
tional awareness. What is actually meant by “regular” or “irregular” events is
higher-level information itself that depends on the context of the underlying
application. Here, it is either assumed to be a priori known or to be learned
from statistical long-time analysis of typical situations.

In complex surveillance applications, we can often take advantage of con-
text information on the sensing environment insofar as it is the stationary
or slowly changing “stage” where a dynamic scenario evolves. Typical exam-
ples of such environmental information are digital road or sea-/air-lane maps
and related information, which can essentially be regarded as spatial motion
constraints (see Figure 1.5 as an illustration). In principle, this information
is available by Geographical Information Systems (GIS). Another category of
context information is provided by visibility models and littoral or weather
maps indicating regions, where a high clutter background is to be taken into
account, for example. Moreover, rather detailed planning information is of-
ten available. This category of information is not only important in mission
planning or in the deployment and management of sensor systems, but can
be used to decide whether an object is moving on a lane or leaving it, for
example. In addition, ground-, sea- or air-lane information information can
be used to improve the track accuracy of lane-moving vehicles and enhance
track continuity.

Integration of Planning Information

In certain applications, rather detailed planning information is available,
which provides valuable context knowledge on the temporal evolution of the
objects involved and can in principle be incorporated into the tracking for-
malism. Planning information is often approximately described by space-time
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Fig. 1.5. Illustration of sea lanes and strategic passages in Pacific Asia.

waypoints that have to be passed by the individual objects during a pre-
planned operation, i.e. by a set of position vectors to be reached at given
instants of time and possibly via particular routes (roads, lanes) between the
waypoints. In addition, we assume that the acceptable tolerances related to
the arrival of the objects at the waypoints are characterized by known er-
ror covariance matrices, possibly individually chosen for each waypoint and
object, and that the association between the waypoínts and the objects is
predefined.

The impact of waypoints on the trajectory to be estimated from future
sensor data (under the assumption that the plan is actually kept) can simply
be obtained by processing the waypoints as additional artificial ‘measure-
ments’ via the standard Bayesian tracking paradigm, where the tolerance co-
variance matrices are taken into account as the corresponding ‘measurement
error covariances’. If this is done, the processing of sensor measurements with
a younger time stamp are to be treated as “out-of sequence” measurements
with respect to the artificial waypoint measurements processed earlier. Ac-
cording to these considerations, planning information can well improve both
track accuracy and continuity as well as facilitate the sensor-data-to-track
association problems involved, provided the plan is actually kept.

Detecting Regularity Pattern Violation

A practically important class of anomalies results from a violation of regularity
patterns such as those previously discussed (motion on ground-, sea-, or air-
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lanes or following preplanned waypoints and routes). An anomaly detector
thus has to decide between two alternatives:

• The observed objects obey an underlying pattern.
• The pattern is not obeyed (e.g. off-lane, unplanned).

Decisions of this type are characterized by decision errors of first and second.
In most cases, it is desirable to make the decisions between both alternatives
for given decision errors to be accepted. A “sequential likelihood ratio” test
fulfills this requirement and has enormous practical importance. As soon as
the test decided that the pattern is obeyed, the calculation of the likelihood
ratio can be restarted since it is more or less a by-product of track mainte-
nance. The output of subsequent sequential ratio tests can serve to re-confirm
“normality” or to detect a violation of the pattern at last. The most impor-
tant theoretical result on sequential likelihood ratio tests is the fact that the
test has a minimum decision length on average given predefined statistical
decision errors of first and second kind.

Tracking-derived Regularity Patterns

We have discussed moving targets that obey certain space-time constraints
that are a priori known (roads/lanes, planned waypoints). A violation of these
constraints was quite naturally interpreted as an anomaly. Seen from a differ-
ent perspective, however, moving targets that are assumed to obey a priori
unknown space-time constraints and to be observed by wide-area sensors, such
as vehicles on an unknown road network, produce large data streams that
can also be used for extracting the underlying space-time constraint, e.g. a
road map. After a suitable post-processing, the produced tracks of motion-
constrained targets simply define the corresponding constraints and can thus
be extracted from tracking-based results. Extracted road-maps can be highly
up-to-date and precise. A discussion where such ideas are used in wide-area
maritime surveillance using AIS data can be found in [42] (AIS: Automatic
Identification System).
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2.0 INTEGRATION OF ADVANCED SENSOR PROPERTIES

Advanced signal processing techniques exploit even sophisticated physical phe-
nomena of objects of interest and are fundamental to modern sensor system
design. In particular, they have a direct impact on the quantitative and qual-
itative properties of the sensor data produced and to be fused. This makes
a more subtle modeling of the statistical characteristics of the sensor output
inevitable. Via constructing appropriate sensor models based on a deeper in-
sight into the physical and technical sensor design principles, the performance
of tracking and sensor data fusion systems can be significantly improved.

Chapter 2 is focused on selected physical and technical properties of sen-
sor systems that are used in real-world ISR applications (Intelligence, Surveil-
lance, and Reconnaissance), such as those discussed in [4, Chapter 20]. The
analysis of characteristic examples shows that context information on par-
ticular performance features of the sensor systems involved is useful, in some
cases even inevitable, to fulfill an overall ISR task. The Bayesian methodology
discussed in Part I is wide and flexible enough to integrate more sophisticated,
appropriately designed, but still mathematically tractable likelihood functions
into the process of Bayesian Knowledge Propagation. The discussed examples
cover finite sensor resolution, Doppler blindness, and main-lobe jamming.

The possibility to exploit even negative sensor evidence is a consequence
that is directly connected with the use of more advanced sensor models. This
notion covers the conclusions to be drawn from expected, but actually missing
sensor measurements for improving the state estimates of objects under track.
Even a failed attempt to detect an object of interest is a useful sensor output
that is interpretable only if a consistent sensor modeling is available.

2.1 Finite Sensor Resolution
Air surveillance in a dense object / dense clutter environment is a difficult task 

that requires refined data association and tracking techniques. In this context,
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tracking for maneuvering groups of objects that join, operate closely-spaced 

for a while, and split off again is confronted with mainly three problems:

1. Sensor Resolution: Due to the limited resolution of every radar sensor,
closely-spaced targets will continuously transition from being resolved to
irrresolved and back again. The importance of resolution phenomena has
been addressed in [125].

2. Data Association: Ambiguous data-to-object associations due to overlap-
ping expectation gates are an inherent problem for formations, which is
made even more difficult by high false return densities and missed detec-
tions.

3. Maneuvers: Often distinct maneuvering phases can be identified, as even
agile objects will not always make use of their maneuvering capability.
Nevertheless, abrupt turns may occur, e.g. if a formation dissolves into
well-separated objects.

These problems require the use of multiple hypothesis, multiple model track-
ing methods as discussed in Part I. The multiple hypothesis character mirrors
the uncertain origin of the data, while the multiple models refer to the different
maneuvering phases. The data association problem is covered by a likelihood
function p(Zk,mk|xk) that statistically describes what a set of mk observa-
tions Zk = {zjk}

mk
j=1 can say about the joint state xk of the objects to be

tracked. Due to the Total Probability Theorem, it can be written as a sum
over all possible, mutually exclusive, and exhaustive data interpretations jk:

p(Zk,mk|xk) =
∑
jk

p(Zk,mk, jk|xk) (2.1)

=
∑
jk

p(Zk|mk, jk,xk) p(mk|jk,xk) p(jk|xk). (2.2)

Generally, the formulation of such likelihood functions is by no means a trivial
task. In many practical cases, however, a given multiple-object tracking prob-
lem can be decomposed into independent sub-problems of reduced complexity.
The example below is practically important but can still be handled more or
less rigorously.

2.1.1 A Radar Resolution Model

For the sake of conciseness, we confine the discussion to non-imaging radar
sensors. With some modifications, the results can also be transfered to in-
frared or electro-optical sensors, for example. Let us consider a medium range
radar producing range and azimuth measurements of an object formation con-
sisting of two targets. For physical reasons the resolution in range, azimuth,
and range-rate will be independent from each other. In particular, range and
cross-range resolution differ significantly in many radar applications. There-
fore, the resolution performance of the sensor is expected to depend strongly
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on the current sensor-to-group geometry and the relative orientation of the
targets within the group. The sensor’s resolution capability is also determined
by the particular signal processing techniques used and the random target
fluctuations. As a complete description is rather complicated, we have to look
for a simplified, but qualitatively correct and mathematically tractable model.
In any case, the radar resolution capability in range and azimuth is limited
by the corresponding band- and beam-width. These radar-specific parameters
must explicitly enter into any processing of potentially irresolved plots. The
typical size of resolution cells in a medium distance is about 50 m (range) and
500 m (cross range). As in target formations the mutual distance may well
be 50 - 500 m or even less, the limited sensor resolution is a real problem in
object tracking.

Centroid Measurements

Under the hypothesis jk = Eiik assuming that the radar plot zik is an irresolved
measurement belonging to two targets with a joint vector xk = (x1>

k ,x2>
k )>,

the conditional likelihood is given by:

p(zik|xk) = N
(
zik; H

g
kxk, R

g
k

)
, (2.3)

where the measurement matrix Hg
k describes a centroid measurement of the

group center, characterized by a corresponding measurement error covariance
matrix Rg

k:

Hg
kxk = 1

2Hk(x
1
k + x2

k), (2.4)

where (rk, ϕk)
> = Hkx

i
k, i = 1, 2, is the measurement of the underlying

tracking problem, where resolution phenomena are irrelevant.

Resolution Probability

Resolution phenomena will be observed if the range and angular distances
between the objects are small compared with αr, αϕ: ∆rk/αr < 1 and
∆ϕk/αϕ < 1. The objects within the group are resolvable if ∆rk/αr � 1
or ∆ϕk/αϕ � 1. Furthermore, we expect a narrow transient region. A
more quantitative description is provided by introducing a resolution prob-
ability Pr = Pr(∆r,∆ϕ) depending on the sensor-to-group geometry. It
can be expressed by a corresponding probability of being irresolvable Pr =
1 − Pu(∆rk, ∆ϕk). Let us describe Pu by a Gaussian-type function of the
relative range and angular distances [126]:

Pu(∆rk, ∆ϕk) = exp
[
− log 2(∆rkαr

)2
]
exp

[
− log 2(∆ϕk

αϕ
)2
]
. (2.5)

Obviously, this simple model for describing resolution phenomena reflects the
previous, more qualitative discussion. We in particular observe that Pu is
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reduced by a factor of 2 if ∆rk is increased from zero to αr. Due to the
Gaussian character of its dependency on the state vector xk the probability
Pu can formally be written in terms of a normal density:

Pu = exp
[
− log 2

(
Hk(x

1
k − x2

k)
)>

A−1(Hkx
1
k −Hkxk

2)
]

(2.6)

= exp
[
− log 2 (Hu

kxk)
>A−1Hu

kxk
]
. (2.7)

Here the resolution matrix A is defined by A = diag(α2
r, α

2
ϕ), while the

quantity Hu
kxk = Hk(x

1
k − x2

k) can be interpreted a measurement matrix for
distance measurements. Up to a constant factor the resolution probability
probability Pu(xk) might formally be interpreted as the fictitious likelihood
function of a measurement 0 of the distance Hk(x

1
k − x2

k) between the ob-
jects with a corresponding fictitious measurement error covariance matrix Ru

defined by the resolution parameters αr, αϕ.

Pu(xk) = |2πRu|−1/2 N
(
O; Huxk, R

u
k

)
. (2.8)

with Ru
k = A

2 log 2 = 1
2 log 2diag[α

2
r, α

2
ϕ]. According to a first order Taylor ex-

pansion, the resolution matrix describing the resolution cells in Cartesian
coordinates proves to be time dependent and results from the matrix A by
applying dilatation and a rotation. In the same way as the Cartesian measure-
ment error ellipses, the Cartesian “resolution ellipses” depend on the target
range. Suppose we have αr = 100 m and αϕ = 1◦. We then expect that the
resolution in a distance of 50 km is about 100 m (range) and 900 m (cross
range). Since for military targets in a formation their mutual distance may
well be 200 - 500 m or even less, resolution is a real target tracking problem.

Impact of Sensor-to-Object Geometry

We expect that the resolution performance of the sensor is highly dependent
on the current sensor-to-group geometry and the relative orientation of the
targets within the group. As an example, let us consider the simplified situa-
tion in Figure 2.1. A formation with two targets is passing a radar. We here
consider an echelon formation. R is the minimum distance of the group center
from the radar.

Figure 2.2 shows the resulting probability Pu(r;R) parameterized by R
= 0, 10, 30, 60 km as a function of the distance r between the formation
center and the radar. The solid lines refer to a formation approaching the
radar (ṙ < 0), the dashed lines refer to ṙ > 0. For R 6= 0, both flight phases
differ substantially. Near R, the probability Pu varies strongly (0.85 → 0.15).
For a radial flight (R = 0), we observe no asymmetry and Pu is constant over
a wide range (r � rc).

2.1.2 Resolution-specific Likelihood

For a cluster of two closely-spaced objects moving in a cluttered environment
five different classes of data interpretations exist [126]:
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Fig. 2.1. Radar resolution phenomena: simulated object group passing a radar
sensor (left: limited by azimuth resolution, right: limited by range resolution).

Pu = Pu(r;R): Echelon Formation
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Fig. 2.2. Effect of the underlying sensor-to-group geometry: resolution probability
depending on the distance between group center and radar for R = 0, 10, 30, 60 km.
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1. Eiik , i = 1, . . . ,mk: Both objects have not been resolved but detected as
a group with probability PuD, z

i
k ∈ Zk representing the centroid measure-

ment; all remaining returns are false (mk data interpretations):

p(Zk|mk, E
ii
k ,xk) =

N (zjk;H
g
kxk,R

g
k)

|FoV|mk−1
(2.9)

p(mk|Eiik ,xk) = pF (nk − 1) (2.10)

P (Eiik |xk) = 1
mk

Pu(xk) P
u
D. (2.11)

With Pu as represented in Equation 2.8, p(Zk,mk, E
ii
k |xk) is up to a con-

stant factor given by:

p(Zk,mk, E
ii
k |xk) ∝ N

((
zi
k
0

)
;
(

Hg
k

Hu
k

)
xk,
(

Rg
k O

O Ru
k

))
. (2.12)

Hence, under the hypothesis Eiik two measurements are to be processed:
the (real) plot zik of the group center Hg

kxk = 1
2Hk(x

1
k + x2

k) and a (ficti-
tious) measurement ‘zero’ of the distance Hu

kxk = Hk(x
1
k − x2

k) between
the objects. We can thus speak of ‘negative’ sensor information [131], as
the lack of a second target measurement conveys information on the target
position. In the case of a resolution conflict, the relative target distance
must be smaller than the resolution.

2. E0
k: Both objects were neither resolved nor detected as a group, so all

returns in Zk are thus assumed to be false (one interpretation hypothesis):

p(Zk,mk|E0
k, xk) = Pu(xk) (1− PuD) pF (mk) (2.13)

P (E0
k|xk) = Pu(xk) (1− PuD). (2.14)

In analogy to the previous considerations, we can write up to a constant
factor:

p(Zk,mk, E
0
k|xk) ∝ N

(
0; Hu

kx, R
u
k

)
. (2.15)

This means that even under the hypothesis of a missing irresolved plot, at
least a fictitious distance measurement 0 is processed with a measurement
error given by the sensor resolution.

3. Eijk , i, j = 1, . . . ,mk, i 6= j: Both objects were resolved and detected,
zik, z

j
k ∈ Zk are the measurements, mk − 2 returns are false (mk(mk − 1)

interpretations):

p(Zk|mk, E
ij
k ,xk) =

N (zik;Hkx
1
k,Rk)N (zjk;Hkx

2
k,Rk)

|FoV|mk−2
(2.16)

p(mk|Eijk ,xk) = pF (mk − 2) (2.17)

P (Eijk |xk) =
(
1−Pu(xk)

)
mk(mk−1) P 2

D. (2.18)
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According to the factor 1 − Pu(xk) = 1 − |2πRu|
1
2 N

(
0; Hu

kx, R
u
k

)
the

likelihood function becomes a mixture, in which negative weighting fac-
tors can occur. Nevertheless, the coefficients sum up to one; the density
p(xk|Zk) is thus well-defined. This reflects the fact that in case of a re-
solved group the targets must have a certain minimum distance between
each other which is given by the sensor resolution. Otherwise they would
not have been resolvable.

4. Ei0k , E
0i
k , i = 1, . . . ,mk: Both objects were resolved but only one object

was detected, zik ∈ Zk is the measurement, mk − 1 returns in Zk are false
(2mk interpretations):

p(Zk,mk|Ei0k ,xk) = |FoV|1−nk N (zik; Hkx
1
k, Rk) pF (mk − 1) (2.19)

P (Ei0k |xk) = 1
mk

(
1− Pu(xk)

)
PD (1− PD). (2.20)

5. E00
k : The objects were resolved, but not detected; all mk plots in Zk are

false (one interpretation):

p(Zk,mk|E00
k , xk) = |FoV|−mk pF (mk) (2.21)

P (E00
k |xk) =

(
1− Pu(xk)

)
(1− PD)2. (2.22)

Since there exist (mk + 1)2 + 1 interpretation hypotheses, the ambiguity for
even small clusters of closely-spaced objects is much higher than in the case
of well-separated objects (mk + 1 each). This means that only small groups
can be handled more or less rigorously. For larger clusters (raids of military
aircraft, for instance) a collective treatment seems to be reasonable until the
group splits off into smaller sub-clusters or individual objects.

Up to a factor 1
mk!

ρmk−2
F |FoV |−mk e−|FoV|ρF independent of xk, the like-

lihood function of potentially irresolved sensor data in a clutter background,

p(Zk,mk|xk) = p(Zk,mk, E
0
k) +

mk∑
i,j=0

p(Zk, E
ij
k ,mk|xk), (2.23)

is proportional to a sum of Gaußians and a constant:

p(Zk, nk|xk) ∝ ρ2F (1− PD)2
(
1− Pu(xk)

)
+ ρF (1− PuD)Pu(xk)+

PuDρFPu(xk)

nk∑
i=1

N (zik; H
g
kxk, R

g
k)+

ρFPD(1− PD)
(
1− Pu(xk)

) nk∑
i=1

{
N (zik; Hkx

1
k, Rk) + N (zik; Hkx

2
k, Rk)

}
+

P 2
D

(
1− Pu(xk)

) nk∑
i,j=1
i6=j

pijk (xk) N (zik; Hkx
1
k, Rk) N (zjk; Hkx

2
k, Rk). (2.24)
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2.1.3 A Formation Tracking Example

If the spatial false return density is not too high, JPDA-type approximations
[25] can be applied. According to this philosophy, the joint state mixture den-
sity p(x1

k,x
2
k|Zk) resulting from the likelihood function previously discussed is

approximated by a single Gaussian with the same expectation vector and co-
variance matrix as the mixture p(x1

k,x
2
k|Zk) (moment matching [25, p. 56 ff]).

Objects moving closely-spaced for some time irreversibly lose their identity:
When they dissolve again, a unique track-to-target association is impossible.
It is thus reasonable to deal with densities that are symmetric under permu-
tations of the individual targets. Thus, no statistically relevant information is
lost and the filter performance remains unchanged, while the mean number
of hypotheses involved may be significantly reduced. Within the framework
of JPDA-type approximations, this has the following effect: Before combining
two components of the mixture via moment matching, we check if the com-
ponents are more ‘similar’ to each other when the target indices are switched.
If this is the case, we combine them instead. These considerations are also a
useful and simple means to avoid track coalescence.

Formation Flight: Raw Data
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Fig. 2.3. Partly irresolved aircraft formation: accumulated raw data of a mid-range
radar.
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JPDAF: Perfect Detection Assumed
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Fig. 2.4. Tracking of an aircraft formation: filtering results (JPDA, no resolution
model).

Figure 2.3 shows a set of data from a typical medium-range radar. The
scan interval is 5 sec and the detection probability about 80%. The example
clearly shows that resolution must be taken into account as soon as the tar-
gets begin to move closely-spaced. Figures 2.4, 2.5 show the estimation error
ellipses for two targets (red, white) resulting from JPDA filtering. While in
Figure 2.4 perfect sensor resolution was assumed (wrongly!), in Figure 2.5 the
previous resolution model was used. JPDA filtering without considering reso-
lution phenomena evidently fails after a few frames, as indicated by diverging
tracking error ellipses. This has a simple explanation: without modeling the
limited sensor resolution, an actually produced irresolved plot can only be
treated as a single target measurement along with a missed detection. In con-
sequence, the related covariance matrices increase in size. This effect is further
intensified by subsequent irresolved returns. If hypotheses related to resolu-
tion conflicts are taken into account, however, the tracking remains stable.
The error ellipses in Figures 2.4, 2.5 have been enlarged to make their data-
driven adaptivity more visible. The ellipses shrink, for instance, if both targets
are actually resolved in a particular scan. The transient enlargement halfway
during the formation flight is caused by a crossing target situation.
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JPDAF: Imperfect Detection Assumed
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Fig. 2.5. Tracking of an aircraft formation: filtering results (with resolution model).

2.1.4 Resolution: Summary of Results

MHT filtering with explicit handling of resolution conflicts can successfully be
applied to real radar data [69]. The main conclusions of extensive simulations
based on exemplary scenarios and typical radar parameters are [122]:

1. For objects with overlapping expectation gates and potentially irresolved
measurements, MHT filters that handle data association conflicts in com-
bination with resolution phenomena by far outperform more conventional
trackers (monohypothesis approximations or filters ignoring imperfect res-
olution). Much higher false return densities and significantly lower detec-
tion probabilities can be tolerated, the tracks are more accurate, the cor-
relation gates are reduced in size, and the critical phases of joining and
splitting-off are supported.

2. Provided only primary radar data are available, information on the object
identity rapidly fades out while the objects move closely-spaced and pro-
duce potentially irresolved plots. After splitting off again, a unique track-
to-target correlation is no longer possible. We may thus drop the notion of
identity and deal with indistinguishable targets. By this, no statistically
relevant information is lost, i.e. the number of hypotheses involved can
significantly be reduced without affecting the track accuracy.
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3. Whether an object group is resolvable or not is highly dependent on the
specific sensor-to-object geometry considered and on the position of the
objects relative to each other. This phenomenon is adaptively taken into
account by the resolution model used. As the correct association hypothe-
ses can reliably be reconstructed by retrodiction techniques at the expense
of some delay, the resolution model may in a retrospective view provide
information on the relative position of the targets within the formation.

4. Besides the ambiguity due to irresolved or missed detections, overlapping
correlation gates, and false returns, scenarios with highly maneuvering
targets are also ambiguous with respect to the object evolution model
assumed to be in effect. Hypotheses related to resolution conflicts fit well
into the more complex framework of IMM-MHT and provide performance
improvements over more simplified dynamics models.
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Abstract
In surveillance problems, dense clutter/dense target situations call for re-
fined data association and tracking techniques. In addition, closely-spaced
targets may exist which are not resolved. This phenomenon has to be
considered explicitly in the tracking algorithm. We concentrate on two
targets that temporarily move in close formation and derive a generaliza-
tion of MHT methods on the basis of a simple resolution model.

Key words: sensor resolution, Bayesian multiple target tracking, multiple
hypothesis tracking, target formations

2.2 GMTI Radar: Doppler Blindness
Ground surveillance comprises track extraction and maintenance of single 

ground-moving vehicles and convoys, as well as low-flying o bjects s uch as
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helicopters or Unmanned Aerial Vehicles. As ground object tracking is a chal-
lenging problem, all available information sources must be exploited, i.e. the
sensor data themselves, as well as context knowledge about the sensor perfor-
mance and the underlying scenario.

2.2.1 Air-to-Ground Surveillance

For long-range, wide-area, all-weather, and all-day surveillance operating at
high data update rates, GMTI radar proves to be the sensor system of choice
(GMTI: Ground Moving Target Indication). By using airborne sensor plat-
forms in stand-off ground surveillance applications, the effect of topographical
screening is alleviated, thus extending the sensors’ field of view. In [144] char-
acteristic problems of signal processing related to GMTI tracking with STAP
radar are discussed. In this context, the following topics are of particular
interest:

• Doppler-Blindness. Ground moving vehicles can well be masked by the
clutter notch of the sensor. This physical phenomenon directly results from
the low-Doppler characteristics of ground-moving vehicles and causes in-
terfering fading effects that seriously affect track accuracy and track conti-
nuity. The problems are even more challanging in the presence of Doppler
ambiguities.

• Collectively Moving Targets. Collectively moving convoys consisting of in-
dividual vehicles are typical of certain applications and have to be treated
as aggregated entities. In some cases, the kinematic states of the individ-
ual vehicles can be treated as internal degrees of freedom. In addition, the
convoy extension can become part of the object state.

• Road-Map Information. Even military targets usually move on road net-
works, whose topographical coordinates are known in many cases. Digi-
tized topographical road maps such as provided by Geographical Infor-
mation Systems (GIS) should therefore enter into the target tracking and
sensor data fusion process.

• Multisensor Data. Since a single GMTI sensor on a moving airborne plat-
form can record a situation of interest only over short periods of time,
sensor data fusion proves to be of particular importance. The data pro-
cessing and fusion algorithms used for ground surveillance are closely re-
lated to the statistical, logical, and combinatorial methods applied to air
surveillance.

2.2.2 A Model for Doppler Blindness

For physical and technical reasons, the detection of ground-moving targets by
airborne radar, typically on a moving platform, is limited by strong ground
clutter returns. This can be much alleviated by STAP techniques [144]. The
characteristics of STAP processing, however, directly influence the GMTI
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tracking performance. Even after platform motion compensation by STAP
filtering low-Doppler targets can be masked by the clutter notch of the GMTI
radar. Let epk = (rk − pk)/|rk − pk| denote the unit vector pointing from
the platform position pk at time tk to the target at the position rk moving
with the velocity ṙk. The kinematic object state is given by xk = (r>k , ṙ

>
k )
>.

Doppler blindness occurs if the radial velocities of the object as well as of the
surrounding main-lobe clutter return are identical, i.e. if the function

hn(rk, ṙk;pk) =
(rk − pk)

>ṙk
|rk − pk|

(2.25)

is close to zero. In other words, hc(xk;pk) ≈ 0 holds if the target’s velocity
vector is nearly perpendicular to the sensor-to-target line-of-sight. For this
reason, the equation hc(xk;pk) = 0 defines the location of the GMTI clutter
notch in the state space of a ground target and as such reflects a fundamental
physical/technical fact without implying any further modeling assumptions.

Qualitative Discussion

Any GMTI detection model for air-to-ground radar must thus reflect the
following phenomena:

1. The detection probability PD depends on the target state and the sen-
sor/target geometry.

2. PD is small in a certain region around the clutter notch characterized by
the Minimum Detectable Velocity (MDV), an important sensor parameter
that must enter into the tracking process.

3. Far from the clutter notch, the detection probability depends only on the
directivity pattern of the sensor and the target range.

4. There exists a narrow transient region between these two domains.

GMTI models are adapted to STAP techniques in that the detection proba-
bility assumed in the tracking process is described as a function of the GMTI-
specific clutter notch. While the current location of the notch is determined by
the kinematical state of the target and the current sensor-to-target geometry,
its width is given by a characteristic sensor parameter (MDV). In this way,
more detailed information on the sensor performance can be incorporated into
the tracking process. This in particular permits a more appropriate treatment
of missing detections. In other words, information on the potential reasons
that might have caused the missing detections enters into the tracking filter.
We observed that by this measure, the number of lost tracks can significantly
be reduced, while the track continuity is improved, finally leading to a more
reliable ground picture. This qualitative discussion of the observed detection
phenomena related to the GMTI clutter notch is similar in nature to that of
resolution effects.
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Quantitative Discussion

In a generic description of the detection performance of GMTI sensors it seems
plausible to write PD = PD(xk) as a product with one factor reflecting the
directivity pattern and propagation effects due to the radar equation [71],
pD = pD(rk, ϕk), the other factor being related to the clutter notch. To this
end, let us consider functions of the following form:

PD(rk, ϕk, ṙk) = pd(rk, ϕk)
(
1− e−

1
2

(
hn(rk,ϕk,ṙk)

MDV

)2)
. (2.26)

In this expression the sensor parameter MDV has a clear and intuitive mean-
ing: In the region defined by |nc(xk)| < MDV we have PD < 1

2 pd. The
parameter MDV is thus a quantitative measure of the minimum radial veloc-
ity with respect to the sensor platform that a ground-moving target must at
least have to be detectable by the sensor (Minimum Detectable Velocity). The
actual size of MDV depends on the particular signal processor used.

For Swerling I targets pd is given by: pd(r, ϕ) = pF
1/[1+snr(r,ϕ)] with

the false alarm probability pF and the signal-to-noise ratio snr(r, ϕ) =
snr0D(ϕ)(σ/σ0)(r/r0)

−4 according to [71]. Let the sensor’s directivity pattern
be described by D(ϕ) = sin2(ϕ− ϕa).

After rearranging the terms in Equation 2.26, we can formally introduce
Gaußian likelihood functions, where hn(xk) appears as a fictitious nonlinear
measurement function:

PD(xk;pk) = PD − PnD N (0;hn(xk;pk), Rn)
)
, (2.27)

with a detection parameter PnD and a related ‘variance’ Rn given by a function
of MDV.

Impact of Sensor-to-Object Geometry

Assuming a flat earth, Figure 2.6 shows an idealized scenario with two airborne
GMTI sensors observing a ground vehicle moving at a constant speed (15 m/s
= 54 km/h) parallel to the x-axis for most of the time. This situation is typical
of stand-off or gap-filling ground surveillance missions. In the second half of
the observation period over ∆tmax = 25 min the target stops for 7 min. Then
it speeds up again reaching its initial velocity. Finally, the target leaves the
field of view of sensor 2. In Table 2.1 selected sensor and platform parameters
are summarized. hp, vp denote the constant height and speed of the sensor
platforms over ground. ∆r, ∆ϕ are the range and azimuth regions covered
by each sensor during observation. The revisit intervals are given by ∆T ,
while MDV denotes the Minimum Detectable Velocity, a GMTI-specific sensor
parameter important to ground-moving target tracking. Unless appropriately
handled, two phenomena in particular can cause problems in GMTI tracking:

1. Sensor-to-target geometries can occur where targets to be tracked are
masked by the clutter notch of the sensor. This results in a series of
missing detections until the geometry changes again.
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Fig. 2.6. Simplified ground target tracking scenario: two moving airborne GMTI
radar platforms and a single ground moving target.

Sensor hp [km] vp [m/sec] ∆r [km] ∆ϕ [deg] ∆T [sec] MDV [m/sec]
1 10 200 [232, 292] [-128, -67] 15 2
2 1 40 [22, 54] [ 77, 172] 10 2

Table 2.1. Simplified GMTI tracking scenario: selected sensor and platform param-
eters.

2. As stopping targets are indistinguishable from ground clutter, the early
detection of a stopping event itself as well as tracking of ‘stop & go’ targets
can be important to certain applications.

The impact of these effects on the detection probability is shown in Fig-
ure 2.7 for the scenario previously introduced. For both sensors we observe
deep notches (dashed line: platform 1, dotted line: platform 2). In the cen-
ter of these notches the radial velocities of the target and the surrounding
ground patch are very close to each other, thus making target discrimination
by Doppler processing (STAP [144]) impossible. This is particularly true if
the target stops.

The dashed and solid lines in Figure 2.8 denote the radial velocities of
ground patches around the target and target returns, respectively. The area
shaded in gray reflects the width of the clutter notches of the sensors, which
is determined by the individual Minimum Detectable Velocities (MDVs). For
each sensor, both curves are closely adjacent to each other, indicating that
the target is moving at a much lower speed than the sensor platforms. We
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Fig. 2.7. GMTI tracking: detection probability of the individual sensors and the
mean accumulated detection probability as a function of the tracking time.

notice sliding intersections between the curves. They are responsible for the
relatively long duration of Doppler-blind phases.

Assuming an idealized processing architecture (measurement fusion), the
mean cumulative revisit interval ∆Tc results from the individual revisit in-
tervals ∆T1 = 15 s, ∆T2 = 10 s, yielding ∆Tc = 6 s. The mean cumulative
detection probability P cD is shown in Figure 2.7 (solid line). The impact of the
clutter notches is more or less compensated for. Due to the fact that P cD is
related to the mean cumulative revisit interval ∆Tc = 6 s, being shorter than
those of the individual sensors (∆T1 = 10 s, ∆T2 = 15 s), P cD is smaller than
the detection probability of the sensor dominating at that time.

On Convoy Resolution

Since in certain applications, ground traffic vehicles often move in convoys,
at first view resolution phenomena seem to be typical of long-range ground
surveillance. Due to the asymmetric effect of range and angle resolution, how-
ever, Doppler-blindness in many cases superimposes resolution effects. As soon
as convoy targets cease to be resolvable, they are at the same time buried in
the clutter notch and thus escape detection. Vice versa, resolvable convoy tar-
gets are rarely Doppler-screened. A separate modeling of the sensor resolution
might therefore be omitted.

As an example we assume two targets moving in a row along a straight
road with 30 km/h as typical of military applications. Their mutual distance is
50 m. The target/sensor geometry is as depicted in Figure 2.6. Let the sensor
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Fig. 2.8. GMTI tracking: range rate of the ground target and the surrounding
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Fig. 2.9. detection and resolution probability
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resolution be given by: αr = 10 m (range), αϕ = 0.1◦ (azimuth), αṙ = 0.5
m/s (range-rate). Figure 2.9 shows the detection probabilities of both sensors
(solid lines). The width of the notches is larger than in Figure 2.7 due to the
smaller convoy speed. The dotted lines denote the resolution probabilities Pr
of the sensors:

Pr = 1− e− log 2(∆r/αr)
2

e− log 2(∆ϕ/αϕ)2 e− log 2(∆ṙ/αṙ)
2

. (2.28)

∆r, ∆ϕ, ∆ṙ are the distances between the targets in sensor coordinates. If Pr
is dominated by the angular resolution (i.e. ∆r and ∆ṙ are small), Doppler-
blindness occurs. Outside of the notch the high range/range-rate resolution
guarantees resolved returns.

2.2.3 Essentials of GMTI Tracking

The choice of a suitable coordinate system for describing the underlying sen-
sor/target geometry, the sensor platform trajectory, and the available a priori
information on the dynamical behavior of ground-moving targets are prereq-
uisites to target tracking. In wide-area applications a flat earth model is often
not admissible. We consider three coordinate systems in which the underlying
physical phenomena become transparent:

1. Appropriate ground coordinates, typically WGS84, where the description
of the target and platform kinematics is of a particularly simple form,

2. the moving Cartesian antenna coordinate system, whose x-axis is oriented
along the array antenna of the GMTI radar mounted on the airborne
sensor platform,

3. the sensor coordinate system, in which the measurements of the kinemat-
ical target parameters are described (target range, azimuth, and range-
rate).

Under the appropriate assumptions, the likelihood is given by the following
expression (single vehicle, mild residual clutter density ρF , mk plots in each
sensor scan Zk = {zjk}

mk
j=1):

p(Zk,mk|xk) =
(
1− PD(xk;pk)

)
ρF + PD(xk;pk)

∑mk

j=1N
(
xk; h(xk), R

)
= p0(Zk,mk|xk) + pn(Zk,mk|xk) (2.29)

where p0 = p0(Zk,mk|xk) denotes the standard likelihood without considering
clutter notches:

p0 = (1− Pd)ρF + Pd
∑mk

j=1N (xk;h(xk),R), (2.30)

pn = pn(Zk,mk|xk) is the part of the overall likelihood function characteristic
of the GMTI problem. For a generalization in case of Doppler-unambiguous
measurements see [67, 127].
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If the GMTI detection model is inserted into this expression, we immedi-
ately see that the effect of the GMTI-specific clutter notch on the likelihood
function can formally be described by a fictitious measurements Zero of a
fictitious quantity defined by pseudo measurement function hnk , where the
minimum detectable velocity plays the role of a fictitious measurements error
standard deviation.

According to Bayes’ rule, the processing of the new sensor data Zk re-
ceived at revisit time tk is based on the predicted density p(xk|Zk−1) and
the likelihood function p(Zk, nk|xk). Assuming a Gaußian sum representation
for p(xk|Zk−1), the Gaußian sum structure of the likelihood function guaran-
tees that also p(x|Zk) belongs to this family. According to Bayes Theorem we
obtain up to a normalizing constant:

p(xk|Zk) ∝ p(Zk, nk|xk) p(xk|Zk−1) (2.31)

∝
∑
i

pik N
(
xk; x

i
k|k, P

i
k|k1
)
. (2.32)

Mixture reduction techniques (pruning, local combining) can be applied in
order to keep the number of mixture components under control. Simulations
showed that even a representation by only two mixture components is suffi-
cient in many practical cases and seems to mirror the underlying physics of
the detection process quite well.

2.2.4 Effect of GMTI-Modeling

Figures 2.10 – 2.12 provide a qualitative insight into the effect of the refined
sensor model on target tracking/data fusion. While a high adaptivity is evident
near the clutter notch, far from the notch no difference to standard filters is
observed.

Fig. 2.10. Effect of GMTI modeling (missing detection near the clutter notch): (a)
standard filter, (b) GMTI filter).

Target Tracking and Data Fusion for Ground Situational Awareness 

STO-EN-SET-235 4 - 37 



Figure 2.10 displays the probability density functions resulting from pro-
cessing the event that a missing detection occurred near the notch. To show the
most interesting features, the densities are projected on the azimuth/range-
rate plane. While the probability density the standard tracker (Figure 2.10a)
is identical with the corresponding predicted density, the refined sensor model
leads to a bimodal structure (Figure 2.10b). The broader peak refers to the
possible event that the missing detection has purely statistical reasons as in
the case of standard filtering, while the sharper peak behind it reflects the hy-
pothesis that the target was not detected because it is masked by the clutter
notch.

Fig. 2.11. Effect of GMTI modeling (target buried in the notch for several revisits):
(a) standard filter. (b) GMTI filter.

The situation where the target is buried in the clutter notch for several
revisits is represented in Figure 2.11. Obviously, the probability density of the
standard filter totally faded away permitting no reasonable state estimation
(Figure 2.11a). The refined filter, however, preserved a definite shape (Fig-
ure 2.11b). This can be explained as follows. Instead of actual sensor data,
the very information that several successively missing detections occurred was
processed. This event provides a hint to the filter that the kinematical target
state probably obeys a certain relation determined by the clutter notch. Ap-
parently, this piece of evidence proves to be as valuable as a measurement of
one of the components of the target state.

Figure 2.12 refers to the event that a detection occurred near the clutter
notch. While the standard filter produced a simple Gaußian, the refined filter
shows a more complex structure. In fact, the probability density is a two-
component mixture whose weighting factors differ in their sign (but sum up
to one). The resulting shape permits an intuitive interpretation. The sensor
model inherently takes into account the fact that the target state xk does
not lead to a small value of nc(xk); otherwise the target would not have been
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Fig. 2.12. Effect of GMTI modeling (detection occurs near the clutter notch): (a)
standard filter. (b) GMTI filter.

detected at all. For this reason, the sharp cut in the probability density simply
indicates the location of the clutter notch.

Fig. 2.13. Gain by processing GMTI data from sensor 1 only: (a) during tracking.
(b) target stop.

Gain by Sensor Data Fusion

Figures 2.13 – 2.15 show the probability densities of the target position in
Cartesian ground coordinates after filtering. The prolated structure of the
probability densities mirrors the predominant impact of cross-range errors.
Their shape is rotated with respect to each other due to the different sensor-
to-target geometries. This effect can be much more pronounced in other sit-
uations. We indicated the true target position. Figures 2.13a – 2.15a refer
to a regular tracking situation (after 10 min, see Figures 2.6, 2.7). Doppler-
blindness occurred for sensor 2 during the previous revisits. The probability
densities shown in Figure 2.13b – 2.15b have been calculated at a time when
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Fig. 2.14. Gain by processing GMTI data from sensor 2 only: (a) during tracking.
(b) target stop.

the target has stopped for 3 min. Evidently in Figures 2.13b, 2.14b the dissi-
pation of the density functions is confined to a particular direction according
to the GMTI sensor model.

Fig. 2.15. Gain by fusing GMTI data from sensor 1 and 2: (a) during tracking. (b)
target stop.

Gain by Sensor Data Fusion

Figures 2.13 – 2.15 show the probability densities of the target position in
Cartesian ground coordinates after filtering. The prolated structure of the
probability densities mirrors the predominant impact of cross-range errors.
Their shape is rotated with respect to each other due to the different sensor-
to-target geometries. This effect can be much more pronounced in other sit-
uations. We indicated the true target position. Figures 2.13a – 2.15a refer to
a regular tracking situation (after 10 min, see Figure 2.6. Doppler-blindness
occurred for sensor 2 during the previous revisits. The probability densities
shown in Figure 2.13b – 2.15b have been calculated at a time when the target
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has stopped for 3 min. Evidently in Figures 2.13b, 2.14b the dissipation of the
density functions is confined to a particular direction according to the GMTI
sensor model.

Figure 2.15 shows the probability densities obtained by sensor data fusion.
In both cases we observe a significant fusion gain. It is a consequence of the
different orientation of the density functions and leads to improved state esti-
mates. The result for the stopping targets is particularly remarkable. Though
no sensor data are available from both sensors, the very fusion of the sensor
output ‘target under track is no longer detected’ implies an improved target
localization. This is a consequence of the different target/sensor geometries.

Key Publication

A detailed discussion of this approach has been published in:

• W. Koch and R. Klemm

Ground Target Tracking with STAP Radar

IEE Proceedings on Radar, Sonar and Navigation, Vol. 148, No. 3, p.173-
185, June 2001 (Special Issue on: “Modeling and Simulation of Radar Sys-
tems, Ed.: S. Watts, invited paper).
An extended version with results from various related conference papers of
the author has been published as a handbook chapter in: W. Koch. Ground
Target Tracking with STAP Radar: Selected Tracking Aspects. Chapter 14
in: Klemm, R. (Ed.): Applications of Space-time Adaptive Processing. In-
stitution of Electrical Engineers, IEE Press, 41 pages, London (2004).

Abstract
The problem of tracking ground-moving targets with a moving radar (air-
borne, spaceborne) is addressed. Tracking of low Doppler targets within a
strong clutter background is of special interest. The motion of the radar
platform induces a spreading of the clutter Doppler spectrum so that low
Doppler target echoes may be buried in the clutter band. Detection of such
targets can be much alleviated by space-time adaptive processing (STAP)
which implicitly compensates for the Doppler spread effect caused by the
platform motion. Even if STAP is applied, low Doppler targets can be
masked by the clutter notch. This physical phenomenon is frequently ob-
served and results in a series of missing detections, which may seriously
degrade the tracking performance. We propose a new sensor model adapted
to STAP and discuss its benefits to tracking well-separated targets. By ex-
ploiting a priori information on the sensor specific clutter notch, the model
in particular provides a more appropriate treatment of missing detections.
In this context the Minimum Detectable Velocity (MDV) proves to be an
important sensor parameter explicitly entering into ground-moving target
indication (GMTI) tracking.
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2.3 Main-lobe Jamming

The degrees of freedom available in applications with airborne phased-array
radar enable suppression of so called main-lobe jammers that try to blind
the radar by transmitting specially designed radiation directly into the main
beam of the radar, by using adaptive array signal processing techniques [128].
Following the spirit of the discussions in the previous sections, the current
position of the resulting jammer notch as well as information on the distribu-
tion of the related monopulse measurements can be incorporated into a more
sophisticated sensor performance model of air-borne phased-array radar. The
proposed model does not only improve object tracking in the vicinity of a
jammer notch in terms of a shorter extraction delay, improved track accu-
racy/continuity. It also has strong impact on strategies for adaptive sensor
control.

2.3.1 Modeling the Jammer Notch

Tracking of an approaching missile under mail-lobe jamming conditions is
among the most challenging data fusion tasks [129]. Advance sensor mod-
els can contribute to their efficient and robust solution. An example is the
simulated situation in Figure 2.16, which shows the trajectories of a sensor
(AESA: Active Electronically Scanned Array) on a moving platform (black),
of an object to be tracked (red), and the jammer (magenta).

*
By using adaptive digital beamforming techniques, AESA radars of mod-

ern interceptor aircraft are able to electronically produce a sector of vanishing
susceptibility in their receive beam pattern. Excepting this “blind spot”, also
called jammer notch, the radar is operating more or less normally. A non-
cooperative missile, however, is expected to approach the interceptor aircraft
as long as possible in the shadow of the jammer notch. The dashed lines in
Figure 2.16 characterize the spatial region of the blind spot depending on the
current sensor-to-jammer geometry object.

The effect of the jammer is directly visible in the signal-to-noise-plus-
jammer ration (SNJR) of the target, which is shown Figure 2.17 for the sce-
nario discussed as a function of time. Only in the beginning can the missile be
detected for a short time. Then it is masked for a long time by the radar’s blind
spot, until it becomes visible again in close vicinity of the sensor, where the
reflected signal is very strong (Burn Through). Sophisticated signal processing
provides estimates of the missile direction by using adaptive monopulse tech-
niques [128] as well as the corresponding estimation error covariance matrix
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Fig. 2.16. Moving aircraft under mail-lobe jamming conditions: approaching missile
near the shadow of the jammer notch

R(bk, jk) as an additional sensor output. R(bk, jk) depends on the current
beam direction bk of the AESA radar and the jammer direction jk and de-
scribes in particular the mutual correlation of the estimated direction cosines
in the vicinity of the jammer notch. It thus provides valuable context infor-
mation on the sensor performance.

The sensor model is based on an expression for the signal-to-noise+jammer
ratio (SNJR) after completing the signal processing chain. The following sim-
ple formula mirrors all relevant phenomena observed:

SNJR(dk, rk;bk, jk) = SNR0

(
rk
r0

)−4
D(dk)×

e− log 2|dk−bk|2/b2
(
1− e− log 2|dk−jk|2/j2

)
.

The vectors bk and jk denote the angular position of the current beam and
the jammer, respectively (assumed to be known). b is a measure of the beam
width, while j indicates the width of the jammer notch produced by adaptive
nulling, and r0 is the radar’s instrumented range. dk is the object’s direction
vector and rk its range from the sensor.D(dd) reflects the antenna’s directivity
pattern. In the case of Swerling I fluctuations of the objects’ radar cross section
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Fig. 2.17. Temporal variation of the signal-to-noise ratio under of an approaching
missile under main-lobe jamming

and for a simple detection model, the detection probability is a function of
dk, rk, bk, and jk :

PD(dk, rk;bk, jk) = P

1
1+SNJR(xk;bk,jk)
F . (2.33)

PD can be approximated by using Gaußians linearly depending on the object
state. Essentially, we enter this expression of the detection probability into the
likelihood function in Equation ??, yielding a Gaußian sum type expression
for it.

2.3.2 Tracking Filters Alternatives

According to the previous discussion, the signal-to-noise-plus-jammer is es-
sential in the modeling of the detection probability and thus enters into the
likelihood function ratio. After some approximations, the likelihood function
can be represented by a Gaußian mixture, finally leading to a version of
the Gaußian sum filter. Since the number of mixture components grows in
each update step, adaptive approximation schemes must be applied. By using
Monte-Carlo-simulations five competing approaches have been evaluated and
compared with each other:

1. Method 1 (Fixed EKF). This tracking filter serves as a reference and uses
no sophisticated sensor model. The impact of the jammer notch on PD and
the measurement error covariance matrix R are not taken into account.

Target True SNJR
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2. Method 2 (Variable EKF). Here, only the monopulse error covariance
R(bk, jk) is used as an improvement of the sensor model. The detection
probability PD is is assumed to be constant.

3. Method 3 (Fixed Pseudo-bearing EKF). This approach assumes a constant
error covariance matrix R, but uses the correct likelihood function, i.e. the
jammer notch, in a second-order approximation.

4. Method 4 (Variable Pseudo-bearing EKF). In addition to the previous
realization, here also the covariance matrix R(bk, jk) is part of the sensor
model.

5. Method 5 (Gaussian Sum Filter). In this tracker the complete likelihood
function and the monopulse covariance R(bk, jk) is used. The number
of the mixture components involved to represent p(xk|Zk) is confined by
three.

For the methods 3-5 the following is true: If the radar beam points to the
vicinity of the blind spot and no detection occurs, a local search is performed.
By this, probability mass is concentrated near the blind spot provided the
target is actually there.

2.3.3 Selected Simulation Results

Figure 2.18 shows the mean track continuity averaged over 250 Monte-Carlo
runs. The superiority of tracking methods that use context information on
the spatial position of the blind spot is obvious. The use of the monopulse
covariance matrix is necessary, but not sufficient for avoiding track loss. The
methods 3, 4, and 5 can, using “negative” sensor evidence, bridge over the
missing data in the jammer notch. In spite of the fact that method 5 is more
computationally intensive than method 4, it shows deficiencies if compared
with method 4. This is an indication for the fact that further performance
improvements are possible by more advanced approximation methods.

Key Publication

A detailed discussion of this approach has been published in:

• W. Blanding, W. Koch , U. Nickel

Adaptive Phased-Array Tracking in ECM Using Negative Information

IEEE Transactions on Aerospace and Electronic Systems, vol. 45, nr. 1,
p. 152-166, January 2009.

Abstract
Advances in characterizing the angle measurement covariance for phased
array monopulse radar systems that use adaptive beamforming to null a
jammer source allow for the use of improved sensor models in tracking
algorithms. Using a detection probability likelihood function consisting of
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Fig. 2.18. Simulation results (250 runs) characterizing track continuity for different
tracking filters.

a Gaussian sum that incorporates negative contact measurement informa-
tion, four tracking systems are compared when used to track a maneuver-
ing target passing into and through standoff jammer interference. Each
tracker differs in how closely it replicates sensor performance in terms of
accuracy of measurement covariance and the use of negative information.
Only the tracker that uses both the negative contact information and cor-
rected angle measurement covariance is able to consistently reacquire the
target when it exits the jammer interference.

Keywords: Target tracking, adaptive beamforming, standoff jamming,
Gaussian sum filter.

2.4 Negative Sensor Information

More advanced sensor models especially enable the exploitation of ‘negative’
sensor evidence. By this we mean the rigorous drawing of conclusions from
expected but actually missing sensor measurements. These conclusions aim
at an improvement of the position or velocity estimates for objects currently
kept under track. Even a failed attempt to detect an object in the field of
view of a sensor is to be considered as a useful sensor output, which can be
processed by using appropriate sensor models, i.e. by background information
on the sensors, with benefits for target tracking, sensor management, and
sensor data fusion. The technical term chosen here for denoting such pieces of
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evidence, i.e. ‘negative’ information, seems to be accepted in the data fusion
community (see, e.g. [132, 133]).

2.4.1 A Ubiquitous Notion

A very simple example illustrates that negative sensor information is an ubiq-
uitous phenomenon, which often appears in disguise. The notion fits well into
the Bayesian formalism. Assume a sensor producing at discrete time instants
tk mutually independent measurements zk of a single object with Gaußian
likelihood N (zk; Hxk, R). Absence of clutter is assumed (ρF = 0). The ob-
jects are detected with a constant detection probability PD < 1. We thus have
classical Kalman filtering under the constraint that there exists not at each
time a measurement. The likelihood function is thus given by Equation ??
and yields:

1. In the case of a positive sensor output (mk = 1), zk is processed by
Kalman filtering leading to p(xk|Zk) = N

(
xk; xk|k, Pk|k

)
with xk|k and

Pk|k given by:

Pk|k = (P−1k|k−1 +H>R−1H)−1 (2.34)

xk|k = Pk|k(P
−1
k|k−1xk|k−1 +H>R−1zk). (2.35)

2. For a negative sensor output (mk = 0), the likelihood function is a
constant 1 − PD. By filtering the prediction density is not modified:
xk|k = xk|k−1, Pk|k = Pk|k−1. According to 2.34 and 2.35 this result could
formally be interpreted as the processing of a fictitious measurement with
an infinite measurement error covariance R, since R−1 = 0.

2.4.2 Lessons Learned from Examples

The Bayes formalism and the likelihood function thus precisely indicate, in
which way a negative sensor output, i.e. a missing detection has to be pro-
cessed. This observation notion can be generalized and leads to the following
conclusions:

1. Missing but expected (i.e. negative) sensor data can convey information
on the current target position or a more abstract function of the kinematic
object state. This type of negative evidence can be included in data fusion
within the rigorous Bayesian structure. There is no need for recourse to
ad hoc or empirical schemes.

2. The prerequisite for processing negative evidence is a refined sensor model,
which provides additional background information for explaining its data.
As a consequence, negative evidence often appears as an artificial sensor
measurement, characterized by a corresponding measurement matrix and
a measurement error covariance.
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3. The particular form of the fictitious measurement equation involved is
determined by the underlying model of the sensor performance, while the
fictitious measurement error covariance is characterized by sensor param-
eters such as sensor resolution, radar beam width, or minimum detectable
velocity.

4. Negative evidence implies well-defined probability densities of the object
states that prove to be Gaussian mixtures with potentially negative coeffi-
cients summing up to one. Intuitively speaking, these components reflect
that the targets keep a certain distance from each other, from the last
beam position, or the clutter/jammer notch.

5. If the fictitious measurement depends on the underlying sensor-to-target
geometry, we can even introduce the fusion of negative evidence.

Key Publication

A detailed discussion of this approach has been published in:

• W. Koch

On exploiting ‘negative’ sensor evidence for target tracking and sensor
data fusion

International Journal on Information Fusion, Volume 8, Issue 1, p.28-39,
Elsevier, January 2007 (Special Issue: “Best Papers of FUSION 2004”,
Eds: P. Svensson, J. Schubert, invited paper).

Abstract
In various applications of target tracking and sensor data fusion all avail-
able information related to the sensor systems used and the underlying sce-
nario should be exploited for improving the tracking/fusion results. Besides
the individual sensor measurements themselves, this especially includes the
use of more refined models for describing the sensor performance. By in-
corporating this type of background information into the processing chain,
it is possible to exploit ‘negative’ sensor evidence. The notion of ‘negative’
sensor evidence covers the conclusions to be drawn from expected but ac-
tually missing sensor measurements for improving the position or velocity
estimates of targets under track. Even a failed attempt to detect a target
is a useful sensor output, which can be exploited by appropriate sensor
models providing background information. The basic idea is illustrated by
selected examples taken from more advanced tracking and sensor data fu-
sion applications such as group target tracking, tracking with agile beam
radar, ground-moving target tracking, or tracking under jamming condi-
tions.

Keywords: Negative information/evidence, target tracking, sensor reso-
lution, local search, adaptive beam positioning, GMTI sensor fusion
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